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Percolation of the Minority Spins in 
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We present some new results on the region in the fl-h plane where the 
+ spins percolate for the nearest neighbor Ising model. In particular, it is shown 
that in high enough dimensions d there is percolation of the minority spins at 
inverse temperatures fi<fl+ with some fl+ >fl~, for which fl+/flc>~�89 
c a constant. 
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1. I N T R O D U C T I O N  

We present some results on the shape and size of the percolative region 
of the nearest neighbor  ferromagnetic Ising model  on yd. The percolat ion 
properties of the connected clusters of  (say) the + spins in equilibrium 
states of  these models have been studied because of interest in the proper-  
ties of correlated percolat ion (see Refs. 1 and 2) and because of some 
questions related to the ferromagnetic phase transition. 

The system's parameters  are defined here so that 

- f l H = f l  ~ a ~ a v + h ~ a  x (1) 
{x,y} x 

i.e., fl is the inverse temperature and h is the external field in units of fl, 
with tic. denot ing the inverse temperature  above which there is spontaneous  
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magnetization. N is the region in the (fl, h) plane where the + spins 
percolate. 

One of our results is that, in large enough dimensions, ~ contains a 
region where h < 0 and fi > tic, and in particular that the + spins percolate 
in t h e - p h a s e  for fie(flc, fl+), fl+ >tic (see Fig. 2). Such a statement is 
expected to be true for all d~> 3, but we cannot prove it. Nevertheless, our 
lower bounds on the persistence of percolation along the h = 0 -  line shed 
some light on the inadequacy in high dimensions of the standard Peierls 
argument as a tool for bounds on fl,.. The results are based on simple 
applications of FKG-type domination principles and of bounds proven by 
Men'shikov and by Bramson (3) on the critical densities pc(d) for indepen- 
dent site percolation models. 

Before we turn to a more complete statement of the results (Section 2), 
let us recall some facts (in reading the following statements it may be useful 
to consult Figs. 1 and 2). One should note here that there is a qualitative 
difference between d =  2 and higher dimensions. This is first seen by con- 
sidering the fl = 0 line, which corresponds to independent site percolation 
models. For  d>~3, numerical calculations (4) indicate that percolation 
already occurs at negative values of h; specifically, at fl = 0 and h = 0 both 
+ spins and - spins percolate. That situation is not possible in two 
dimensions, for which the Harris argument (s) and its extension to the 
interacting systems considered here (1) show that [in the extremal Gibbs 
states of (1)] there cannot be simultaneous percolation of two opposite 
spin types. Thus, for d =  2 it is proved that there is no + percolation for 
h < 0 at any fl ~> 0 and that at h = 0 the onset of percolation coincides with 
the occurrence of long-range order and symmetry breaking; i.e., at h = 0 the 
+ spins do not percolate if fl ~< tic, and for fl > tic within the - phase (see 
Fig. 1). Statements known to apply in any dimension d ~> 2 are that (1) the 

h 

h=(tsc-15).2d 

0 
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Fig. 1. Subset of ~@ given by (6). 
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Fig. 2. Subset of~@ given by (7) and (ll) for large d. 

+ spins percolate at h = 0  in the + phase for all fl>flc, 11~ (2) for each fl 
there is + percolation at h large enough, and (3) there is fl+, fi,.<~fi+ < co, 
so that for fi > fi + there is only - percolation for h ~< 0 - ,  i.e., at negative h 
or in the - phase at h = 0 .  

The last assertion is the case addressed by the original Peierls 
argument, rT~ which excludes the possibility of large contours, and in par- 
ticular the boundary of the infinite + cluster in the - phase. In fact, while 
that argument is usually used for a bound on tic, it really provides an 
upper bound on both fic and fl+. As we shall see, in high dimensions 
fi~./fi+ ~ 1. This observation sheds some light on the disparity, as d--* co, 
between the behavior of tic and that of the upper bound obtained by 
studying the Peierls' contours (see Section 3). 

2, R E S U L T S  

We define/.~(fi, h) as the (unique, for h r 0) Gibbs state corresponding 
to (1), with /4fl, 0+)  [resp. /J(fl, 0 - ) ]  denoting the + state (resp. the - 
state) for fl > tic. In general, we regard the ray (h = 0, fl > tic) in the (fl, h) 
plane as doubly covered, and write h i>0 to mean h > 0  or h = 0  +. Let 
P+~(fl, h) be the probability, in #(fl, h), that there exists an infinite 
connected + cluster. Because this is a tail event and p(fl, h) are extremal 
Gibbs states, PL(fl, h) = 0 or 1. 

The percolative regime can be alternatively described as 
+ ~ = { ( f i ,  h) lPoo(B,h)=l} ,  or as the region where there is a nonzero 

probability that the origin belongs to an infinite cluster of + spins. 



862 Aizenman, Bricmont, and Lebowitz 

For f i=0 ,  #(fi, h) is just a Bernoulli measure (independent site 
percolation) with 

Prob(ax = +1)=�89 + { a ~ ) h ) =  [1 +exp(- -2h) ]  -~ (2) 

The independent spin measure is trivially monotone "increasing" in h, 
insofar as the sets of + spins are considered. Moreover, for all fl > 0 the 
measures #(fl, h) satisfy the conditions for the Fortuin-Kasteleyn- 

+ Ginibre ~ inequality, which implies that Po~(fi, h) is a monotone non- 
decreasing function of h. Hence for any dimension there is a function hc(fi) 
such that 

Po~(fl, h) if h >hc(fl) 
if h < hc(/~) 

We now supplement the results described in Section 1 with the 
following observations, of which the first is based on a more refined 
application of the F K G  inequality. 

1. The function hc(fi) (which we find to be sometimes increasing and 
at other times decreasing in fl) satisfies 

Ihc(~=)-h,,(/~2)l ~<2d Ifi~-f12[ 

Equivalently: if there is percolation for some (fl',h'), 
percolation within the cone 

{(fl, h)l h >~h' + 2d i f l -  fl'l } 

then 

(4) 

there is 

(5) 

This fact follows easily, by the argument of Ref. 9, from the obser- 
vation that the functions gx, v({a}) = ax + a). +_ axa v and the event "the + 
spins percolate" are increasing in the F K G  sense. 

The following two statements are obtained by combining the above 
principle with some auxiliary information. 

2. The + spins percolate for 

h > 2d(fic.- fl) (6) 

(see Fig. 1) and for 

h > he(O) + 2dfl (7) 

(see Fig. 2), where he(0) is related to the critical density for independent 
site percolation [see (2)] by p~. = { 1 + exp[ -2hc(0)]  } -1. 
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These statements, which can be read as upper bounds on h,., improve 
the previous results for nonzero h (see Fig. 2 in Higuchi, (2) where our h is 
called flh). Condition (6) is a direct consequence of (4) or (5) and the fact 
that for all e > 0  there is percolation at (fl', h ' ) =  (t ic+c,  h = 0 + )  {6) [which 
can be restated as h,.(fic)<~O], and (7) is obtained by taking 
(3', h') = (0, h,,(O) + e). Let us add that (7) has an alternative derivation by 
a much more general argument, which is based on the fact that any 
measure "dominates"--in the F K G  sense, the independent measure/x that 
matches the worst conditional probability: 

#({ax= +l})=infProb({ox= +l}[oy=~vforally#x) (8) 

3. As in the introduction, let fl+ be the infimum of fi for which only 
the - spins percolate at h = 0 - :  

[3+=inf{ f l>OlP+~(f l ,  O- )=O,P~, ( f i ,  O ) > 0  (i.e., = 1)} (9) 

The bound (7) yields 

fl + >~ -h,.(O)/(2d) (10) 

Combining (10) with the bound p,. <~ did of Ref. 3, we get 

and 

- k i lO)  >~ �89 log d -  c (1 la) 

fi+ , . - - - ~ -  O ( l l b )  

Since it follows from the infrared bounds (I~ that 

f l , .<~[2(d-1)]  -1 for d>~4 (12) 

[with f l , . (2d- 1 ) ~ 1 as d ~ oo ] we get a proof that for d large 

fl +/fl,.>~ �89 d - c '  > 1 (13) 

3. C O N C L U S I O N S  FOR H Y P E R S U R F A C E  E N T R O P Y  

By the remarks on the Peierls contour argument made in the introduc- 
tion, the inequalities (11)-(13) show that in its usual form it does not 
extend as close to the true value of fl,. as the infrared bounds do. Related to 
the above observation is a lower bound on the entropy of closed hypersur- 
faces. 
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The basic estimate of Peierls is that the probability of having a + spin 
at the origin, for a state obtained with - boundary condition, is less than 

exp( -2 /?  17[) (14) 
Y 

where the sum runs over all contours (which are the outer boundaries of 
connected sets) enclosing the origin, and [71 is the (hyper-) area of 7 [i.e., 
the cardinality of the set of (d-1) -d imens ional  unit cubes forming 7] 
While it is quite clear that when the sum in (14) is less than 1/2 there is 
long-range order, it is also true that the mere convergence of this sum has 
such an implication. 

Indeed, if (14) converges, there are no infinite contours, i.e., no infinite 
clusters of + spins in the - phase. Moreover, by the Borel-Cantelli lemma 
(the easy part), we know that if (14) converges, there are only a finite num- 
ber of contours surrounding the origin. This in turn implies that there is an 
infinite cluster of - spins ( f o r -  b.c.), and thus a breakdown of symmetry, 
which (by an F K G  argument) can occur only if there are two different 
Gibbs states and the spontaneous magnetization does not vanish. 

Thus, with 

K(n)= # {717 encloses0 and 171 =n }  
(15) 

s (d )=  lira n I logK(n) 

(which exists by a subadditivity argument) we define the Peierls inverse 
temperature by 

tip = �89 (16) 

It is clear that /~p=inf{/~l(14) converges }, and hence by the above 
argument 

/~P >~/~+ ~>//c (17) 

While the best upper bound we are aware of for s(d) is s(d)<<, const (11~ 
the inequalities (11) and (17) yield 

d > log  d - c  
s( ),~ 2d (18) 

which we expect to be closer to the correct asymptotic behavior as d--* oc. 
Precise estimates of s(d) for d large will have to address the reduction in 
the entropy of contours (i.e., their number) caused by the fact that they are 
closed (in addition to being connected). Anyway, we saw that even an 
optimal estimate of s(d) would not carry us as close to /3 o for d large, as 
the infrared bounds do. 
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Finally, we remark that for /~ in the interval/ /c  </~ </~ + one cannot 
use the standard contours as a good not ion of an interface between the + 
and the - phases in a situation like the Dobrushin ___ boundary 
conditions. (12) Further remarks on this point (which is relevant for the 
study of the "roughening transition") can be found in Refs. 13 and 14. 
Some alternative methods for studying interfaces can be based on 
arguments in Ref. 15. 
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